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Quantization of the Sphere With Coherent States
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Current views link quantization with dynamics. The reason is that quantum mechanics
or quantum field theories address to dynamical systems, i.e., particles or fields. Our
point of view here breaks the link between quantization and dynamics: any (classical)
physical system can be quantized. Only dynamical systems lehghgmicalquantum
theories, which appear to result from the quantization of symplectic structures.
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1. INTRODUCTION

The procedure developed here, througdherent stateCS), allows to
guantize any system considered ahgrervation set.e., a set of datX = {x},
whose elements can be points, or any kind of parameters. \Mhleas a sym-
plectic structure, it can be considered as a phase space, and our approach is then
equivalent to the usual quantization, although with some peculiar characteristics.
But the CS procedure is much more general and can be applied even in the absence
of symplectic structure, and in fact of any structure at all (other than a measure)
over X.

A quantization, in this sense, may be considered as a different way to look
at the system. It shows numerous analogies with some procedures used in data
handling (discussed in more details in Gazetal, to appear) for instance those
involving wavelets, which are the basic example of coherent states. In many re-
spects, the choice of a quantization appears here as the choice of a resolution
to look at the system. As it is well known, some aspects of quantum mechan-
ics may be seen as a noncommutative geometry of the phase space (position and
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momentum operators do not commute). If we quantize a “space of data,” it will be
no surprising that a noncommutative geometry emerges. We will show explicitly
how a quantization of the ordinary sphere leads to its fuzzy geometry.

2. COHERENT STATES

The (classical) system to be quantized is considered as a set oKdatéx},
with no other specified structure than a measur@with measure axioms; see
Gazealet al, to appear; Lieb and Loss, 2001). The quantization is defined by the
choice of a (separable) Hilbert spaiewith an inclusion map

X 5 X > |X) € H. 1)
This defines the coherent stat&$, which must obey two conditions:

1. The resolution of the identity

/X p(dX) X)X = . %)

It implies that thecoherent stateps) form anover-completécontinuous)
basis ofH.
2. A normalization

(XIx) = 1. ®3)

Note that thex) (x| appear as natural Hermitian operators (orthogonal projection)
overH.

There exists a natural Hilbert space associated,ta—the space-2(X, u)
of square-integrable functions ov&r There is an isometric embeddiig of our
(closed) Hilbert subspadk in L2, resulting from thaNeyl-Wigner injection

H3 ) > W eWH) CL2: x> ¥(X) = (X|y). (4)

Thus, the quantization procedure may also be seen as a peculiar choice of a sub-
space ofL2. An explicit procedure is explicited in Gazeat al. (to appear),

and applied below to the sphef. It begins with the selection of a subvec-

tor space ofL? by defining an orthonormal set df functions ¢;, verifying

N(X) = Zi'\‘:l |# (X)|? < co. We noteg;, as a vector, with the ket notatigi),

and we define the family of coherent states as

1 .
X) = qubi(x)n), (5)

which allows to perform the analysis presented above. The resolution of identity
implies the existence of eeproducing kernel Kin H considered as a subset of
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L2, such thatv = K o W (cf. wavelets), i.e.,

lIf(x)=/u(dy)K(x,y)\lf(y): K(x,y) = (x]y) (6)

2.1. Observables and Symbolic Calculus

A classicalobservable oveX is a functionf : X — K(R orC). To any such
function f, we associate the observable o¥&r

A= /X w(dx) F(x)1%) (x]. %

For a large class of observables, these operators are self-adjoint.

The existence of the continuous frarfig)} enables the definition of a sym-
bolic calculusa’la Berezin—Lieb (Berezin, 1975). To each linear, self-adjoint op-
erator (observablg) acting o, one associates tth@wer (or covariant) symbol

O(x) = (x|O|x) ®)

and theupper (or contravariant) symbdhot necessarily unique@ such that

0= / 1(dx) OIX) (x]. ©)
X

Note thatf is an upper symbol of;.
They obey the Berezin—Lieb inequalities

/ 1(dx) g(O(x)) < Trg(O < / 1£(dx) g(O(x)), (10)
X X

whereg(x) is a convex map.

2.2. First Example: Quantization of the Circle S*

In Gazealet al. (to appear), we gave the simplest examples of application
of this procedure: the quantization of a discrete set of elements, and of the unit
interval. Here we follow by showing a quantization of the cirgle= {6}, with the
normalized measur@d /.

The simplest possibility is a (real) quantization, with= R? := {(x, y)}.

The map (1) is defined by

X 36  |#) = (cost, sing) € R?. (11)

The coherent state) are the unit vectors oR? of argumentd, which
design the unit circle (thus, the embedding). It is easy to check that they form an
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over-complete basis 6f, with the completness relation (2):

2 do
/ —10)(0] = In.
0 T

In matrix notation, an observable Bf is written as a linear symetric 2 2
matrix

a b|] a+d a—d
A=|:b d:|=TO'0+ 5 o3 + boy, (12)

so thatoy = T and the Pauli matrices form a basis for the space of observables.
Corresponding upper and lower symbols can be obtained as

A®B) = cos? +bsin,

a+d+a—d
2 2

A d
A@) = %Ha—d) cos P + b sin2.

3. QUANTIZATIONS OF THE 2-SPHERE
3.1. The 2-Sphere

In Gazeauet al. (to appear), we proposed a practical method to construct
explicitly the coherent states by selecting some peculiar elemeits éfere we
apply this method to the quantization of the observatiorXset S?, the 2-sphere.

A point of X is notedx = (9, ¢). We adopt the normalized measyrédx) =
sin6 do d¢ /4, proportional to the SU(2)-invariant measure, which is also the
surface element.

We know thatu is a symplectic form, with the canonical coordinates: ¢,

p = —cosy. This allows to sees’ as the phase space for the theory of (clas-
sical) angular momentum. In this spirit, we will be able to interpret our pro-
cedure as the construction of the coherent spin states. Also, our construction
will take advantage of the group action of SO(3) 6 S? is embedded in

R3, and G = SQ(3) acts as isometry group i6?. However, we emphasize
again that our quantization procedure is based on the only existence of a
measure, and may be used in the absence of metric or symplectic
structure.

Quantization is defined by an embeddingS3fin an Hilbert. This paper
deals with the simple casé = C?. The case${ = R" will be treated in future
works.
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3.2. Two-Dimensional Hermitian Processing of the 2-Sphere:
The Quantum Spin in Its Complex Version

Here, we embe®? into the smallest complex Hilbert space possitile= C2.
This quantization leads to tlveherent spin statdérecchietal, 1972; Perelomov,
1986; Radcliffe, 1971). Proceeding as indicated in Gaztal. (to appear), we
define’H by the selection of the two complex functions

11) = @1 : d1(X) = v/2c0s9/2 (13)
12) = @y 1 Dy(xX) = V/2siN0/26¢, 0<6 <m, 0<¢ < 2.
We define the embedding map

X > |X) = v/2c0s9/2|1) + /2 sind /26 |2), (14)
leading to
B cog6/2 cosh/2sing/2e'¢
X =2 [0059/2 sing /2% Sin?0/2 ]

= [op + €0s6 03 + SiNO COSPp 01 + SINO Singos].

We can check
/ L@ =1, (xx) = 1.
3

The Pauli matrices; andop form a basis of the Z 2 complex hermitian
matrices. The upper and lower symbols follow from those of the basis, namely

ogo=1
01 = Sind cos¢

0, = Sing sing

03 = COSH
oo=1
0i =30, i=1,2,3

We obtain easily the operators associated to the functions (coordifated)

¢ as
B K B

Their commutator isfy, Ag] = ‘g—:al, with
2

(XI[As, AdJIx) = -2 sin6 cosg (16)
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and
4
XI[A, AJPIX) = — o (17)
’ (647
We may calculate the operators associated to the coordinake’s in
. 1
x! = sind cosg > 3% (18)
9 . 1
X = sin@ cosy +— :_302’ (19)
3 1
x* = cosf) i Zo3, (20)

involving the three Pauli matrices. These operators provide the quantum version of
the coordinates. We interpret them below in terms of noncommutative geometry.
Note that we can perform the same procedure with the two functions
d'1(X) = V2cos9/2e71%/2 and d'5(x) = +/2sind/2e719/2, instead ofd; and
®, given by (13), with identical results.
The generalization td + 1, instead of 2-dimensions, starts from a choice
of L 4+ 1 basis functions (see below), leading to an Hilbert sgdad# dimension
L + 1. As we will see, this is linked to the fuzzy sphere witht 1 cells.

3.3. Link With the Fuzzy Sphere

We recall an usual construction of the fuzzy sphere (Madore, 1995, p. 148).
It starts from the decomposition of any smooth functibre C(S?) in spherical
harmonics,

oo
F=>"%" finYp (21)
(=0 m
We noteV* the (Z + 1)-dimensional vector space generated by¥hefor fixed
¢. The direct sumb}_,V¢, generated by th¥, for ¢ < L, is a vector space of
dimension [ + 1)>.
Through the embedding & in R, we may write each point & asx = (x'),
with Zf’zl(x‘ )? = 1. Any function inS? can be seen as the restriction of a function
onR3. Moreover, such functions are generated by the homogeneous polynomia in
IR3. This allows (identifying a function and its restriction) to express equation (21)
in a polynomial form inR3:

f= f(o) + Z 1:(i)Xi + -+ Z f(iliz‘,,i{)xilxiz Loox 4+, (22)
(in) (iziz+ie)

where each sum extends to all symmetric combinations dfithdices to generate
V¢, For each fixed value of, the 2 + 1 coefficientsf(,i,...,y (¢ fixed) are those
of the symmetric traceless:33 x - - - x 3 (¢ times) matrics.
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e ToO obtainSu‘ZZy,LH, the fuzzy sphere with + 1 cells, we consider the three
generatorg' ofthe (L + 1)-dimensional irreducible unitary representation
(IUR) of SU(2). They are expressed as 1) x (L + 1) matrices obeying

Liis J3] = i€ijk k- (23)

e To obtain the operatdf associated to any functioh we first replace each
x' by the matrixX' = K J', wherex = 2r/+/L2 + 2L.

e In the above development (22) 6f we replace each coordinateby the
(L+1) x (L+ 1) matrixx', and the usual product by matrix product.
Then we truncate the expression obtained at indexL . These matrices
generate the sé - +1 of (L + 1)?independentl( + 1) x (L + 1) matrices:
aclosed algebra through the product, which provides a finite approximation
to C(S?). According to this construction, a basisMt-** is provided by all
products of thel"'s up to powelL. The corresponding (noncommutative)
matrix geometries are finite, fuzzy approximations to the smooth sphere
S?, which appears as the limi — oo of their sequence. Note thit-+1
may be identified tap’_,V*.

Examples:

e L = 0: we replace the' by the pure number 1 and?, of dimension 1,
reduces tC.

e | = 1:wereplace th&' by k.o, the three Pauli matrices{ = 2r /3). By
their products, they generaké?, of dimension 4. This gives the geometry
of the fuzzy spher&,,y,» with 2 cells.

e L = 2: we replace th&' by «,J', with k, = r/+/2, and the three rotation
matrices; ', J/] =i, J*. By their products, they genera?, of dimen-
sion 9. This gives the geometry of the fuzzy sph8e,y,s with 3 cells.

According to this construction, the geometry of the fuzzy sphere results from
the choice of the algebrsi -+, of the representation matrices, with their matrix
product. This gives the abstract algebra of operators actif@s4, 1. The order
(L + 1) of the matrices invites to see them as acting as the endomorphisms of an
Hilbert space of dimensiorL(+ 1) (Freidel and Krasnov, 2002). This is exactly
what provides the coherent states introduced here.

3.3.1. Fuzzy Spheres From Coherent States

The CS procedure presented above deals with thdcasg = 2. Itassociates
to the three coordinates, the three Pauli matrices, i.e., the three operators involved
in the construction o0&,y ». With the identity matrix, they form the vector space
of operatorsM?. We introduced them through their action on the Hilbert space
V12 generated byp; and ®,, which provides a 2-dimensional IUR of SU(2).
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This suggests the following generalization of the CS procedure which leads to
the fuzzy spher&yzzy +1: We consider as the Hilbert spavé’/2 which is of the
(L + 1)-dimensional IUR of SU(2). Wheln = 2k is even, we may chose foi* the
canonical basi, i), = —k, ...k, where eaclk, i) = Yik is a spherical harmonic.
This does not apply however whers odd. Inthe general case, we may follow
Gazeau and Navaes (2003). We select the basig,i),i = —-L/2,...,L/2,
corresponding to the orthogonal functioﬁé/z. These functions are defined by
the intermediary of the complex variable

ZL/2+i
I—/Z-H 1+ [z]2)L/2

= ,/CL 5, cos/27 /2 sint/24 g 2671 L/,

with Ct/z+I = m (formula (19) of (Gazeau and Novaes, 2003). This
allows us to sed-*1 as the set of endomorphisms EXd(?).

The coherent states are constructed following the procedure above:
x) = Y, ©/%(x)|L/2,i). The observables are given by

z=tand/2e"'?, as@iL/Z(x) = @iL/Z(O, ¢) =

L/2

Av= > [ @) 08 08] 20011 (24)
i,j=—L/2

In other words, Al = [ u(dx) f(x)©*x). Now we can develop

fasf=>7"0>, fm®f and calculate the sum. To go further, we take into

account the fact that the prodL@f/ 2(x)®'j‘/ 2(x) can be developed themselves in

spherical harmonics, with all terms havitgpwer thanL . Given the orthogonality

of the spherical functions, this implies that the only terms in the development of

f are those witlt < L. Finally, this leads to

Fj = / M(dX)XL: Fin® ()0 2()O]/%(x). (25)
=0
Involving the Clebsh—Gordan coefficients
Cf™ = [ nianeq08- 2000} 00, (26)
we obtain finally
Fij = XL: fomConi) 2. (27)

In particular, the observables’?rf1 associated to the spherical harmonics
Yt, ¢ < L, areinnumberl( + 1)? and provide a basis fovl“+1. They are defined

by [Yalij = Coif /2.

mij
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For any value of., the CS construction leads to an Hilbert space of dimension
L + 1, as indicated above. What we have shown is that the canonical algebra of
operators acting oHl identifies with the algebra of operators acting®i,y, +1,
the fuzzy sphere with + 1 cells.

4. DISCUSSION

The CS quantization method proposed here applies to any observation set.
In Gazeauet al. (to appear) we applied it to discrete samples and to the unit
segment. More general developments will be given in a forthcoming paper. Here
we have presented its application to the spH&teA quantization appear as a
choice to look at the sphere with a different point of view, with a finite resolution.
We have shown how complex quantizations lead to an explicit construction of
the Hilbert space associated to the fuzzy sphere, although we have not examined
the noncommutative differential structure associated. We have also emphasized
the links with the theory of (irreducible) group representations.

The derivation of coherent spin states shows how this procedure, applied to
a symplectic space, is able to give an usual dynamical quantum theory. However,
as we claimed, it is much more general, allowing to perform quantization in the
absence of any dynamical evolution. In further works, we will examine this possi-
bility and study the application of this quantization procedure to other manifolds,
with and without symplectic structure. Potential applications are the derivations
of new fuzzy spaces. Also, since quantization can be performed in the absence of
any dynamics, this opens perspective for fully covariant approaches, when no time
function is defined.
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