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Current views link quantization with dynamics. The reason is that quantum mechanics
or quantum field theories address to dynamical systems, i.e., particles or fields. Our
point of view here breaks the link between quantization and dynamics: any (classical)
physical system can be quantized. Only dynamical systems lead todynamicalquantum
theories, which appear to result from the quantization of symplectic structures.
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1. INTRODUCTION

The procedure developed here, throughcoherent states(CS), allows to
quantize any system considered as anobservation set, i.e., a set of dataX = {x},
whose elements can be points, or any kind of parameters. WhenX has a sym-
plectic structure, it can be considered as a phase space, and our approach is then
equivalent to the usual quantization, although with some peculiar characteristics.
But the CS procedure is much more general and can be applied even in the absence
of symplectic structure, and in fact of any structure at all (other than a measure)
over X.

A quantization, in this sense, may be considered as a different way to look
at the system. It shows numerous analogies with some procedures used in data
handling (discussed in more details in Gazeauet al., to appear) for instance those
involving wavelets, which are the basic example of coherent states. In many re-
spects, the choice of a quantization appears here as the choice of a resolution
to look at the system. As it is well known, some aspects of quantum mechan-
ics may be seen as a noncommutative geometry of the phase space (position and
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momentum operators do not commute). If we quantize a “space of data,” it will be
no surprising that a noncommutative geometry emerges. We will show explicitly
how a quantization of the ordinary sphere leads to its fuzzy geometry.

2. COHERENT STATES

The (classical) system to be quantized is considered as a set of data,X = {x},
with no other specified structure than a measureµ (with measure axioms; see
Gazeauet al., to appear; Lieb and Loss, 2001). The quantization is defined by the
choice of a (separable) Hilbert spaceH with an inclusion map

X 3 x 7→ |x〉 ∈ H. (1)

This defines the coherent states|x〉, which must obey two conditions:

1. The resolution of the identity∫
X
µ(dx) |x〉〈x = IH. (2)

It implies that thecoherent states|x〉 form anover-complete(continuous)
basis ofH.

2. A normalization

〈x|x〉 = 1. (3)

Note that the|x〉〈x| appear as natural Hermitian operators (orthogonal projection)
overH.

There exists a natural Hilbert space associated toX, µ—the spaceL2(X, µ)
of square-integrable functions overX. There is an isometric embeddingW of our
(closed) Hilbert subspaceH in L2, resulting from theWeyl-Wigner injection

H 3 |ψ〉 7→ 9 ∈ W(H) ⊂ L2 : x 7→ 9(x) ≡ 〈x|ψ〉. (4)

Thus, the quantization procedure may also be seen as a peculiar choice of a sub-
space ofL2. An explicit procedure is explicited in Gazeauet al. (to appear),
and applied below to the sphereS2. It begins with the selection of a subvec-
tor space ofL2 by defining an orthonormal set ofN functionsφi , verifying
N (x) ≡∑N

i=1 |φi (x)|2 < ∞. We noteφi , as a vector, with the ket notation|i 〉,
and we define the family of coherent states as

|x〉 ≡ 1

N (x)

∑
i

φi (x)|i 〉, (5)

which allows to perform the analysis presented above. The resolution of identity
implies the existence of areproducing kernel K, in H considered as a subset of
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L2, such that9 = K ◦9 (cf. wavelets), i.e.,

9(x) =
∫
µ(dy)K (x, y)9(y); K (x, y) ≡ 〈x | y〉 (6)

2.1. Observables and Symbolic Calculus

A classicalobservable overX is a functionf : X 7→ K (R orC). To any such
function f , we associate the observable overH,

Af ≡
∫

X
µ(dx) f (x)|x〉〈x|. (7)

For a large class of observables, these operators are self-adjoint.
The existence of the continuous frame{|x〉} enables the definition of a sym-

bolic calculusà la Berezin–Lieb (Berezin, 1975). To each linear, self-adjoint op-
erator (observable)O acting onH, one associates thelower (or covariant) symbol

Ǒ(x) ≡ 〈x|O|x〉 (8)

and theupper (or contravariant) symbol(not necessarily unique)̂O such that

O =
∫

X
µ(dx) Ô(x)|x〉〈x|. (9)

Note that f is an upper symbol ofAf .
They obey the Berezin–Lieb inequalities∫

X
µ(dx) g(Ǒ(x)) ≤ Trg(O ≤

∫
X
µ(dx) g(Ô(x)), (10)

whereg(x) is a convex map.

2.2. First Example: Quantization of the CircleS1

In Gazeauet al. (to appear), we gave the simplest examples of application
of this procedure: the quantization of a discrete set of elements, and of the unit
interval. Here we follow by showing a quantization of the circleX = {θ}, with the
normalized measuredθ/π .

The simplest possibility is a (real) quantization, withH = R2 := {(x, y)}.
The map (1) is defined by

X 3 θ 7→ |θ〉 ≡ (cosθ , sinθ ) ∈ R2. (11)

The coherent states|θ〉 are the unit vectors ofR2 of argumentθ , which
design the unit circle (thus, the embedding). It is easy to check that they form an
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over-complete basis ofH, with the completness relation (2):∫ 2π

0

dθ

π
|θ〉〈θ | = IH.

In matrix notation, an observable ofR2 is written as a linear symetric 2× 2
matrix

A =
[
a b
b d

]
= a+ d

2
σ0+ a− d

2
σ3+ bσ1, (12)

so thatσ0 ≡ I and the Pauli matricesσi form a basis for the space of observables.
Corresponding upper and lower symbols can be obtained as

Ǎ(θ ) = a+ d

2
+ a− d

2
cos 2θ + b sin 2θ ,

Â(θ ) = a+ d

2
+ (a− d) cos 2θ + b sin 2θ.

3. QUANTIZATIONS OF THE 2-SPHERE

3.1. The 2-Sphere

In Gazeauet al. (to appear), we proposed a practical method to construct
explicitly the coherent states by selecting some peculiar elements ofL2. Here we
apply this method to the quantization of the observation setX = S2, the 2-sphere.
A point of X is notedx = (θ , φ). We adopt the normalized measureµ(dx) =
sinθ dθ dφ/4π , proportional to the SU(2)-invariant measure, which is also the
surface element.

We know thatµ is a symplectic form, with the canonical coordinatesq = φ,
p = − cosθ . This allows to seeS2 as the phase space for the theory of (clas-
sical) angular momentum. In this spirit, we will be able to interpret our pro-
cedure as the construction of the coherent spin states. Also, our construction
will take advantage of the group action of SO(3) onS2. S2 is embedded in
R3, and G = SO(3) acts as isometry group inS2. However, we emphasize
again that our quantization procedure is based on the only existence of a
measure, and may be used in the absence of metric or symplectic
structure.

Quantization is defined by an embedding ofS2 in an HilbertH. This paper
deals with the simple caseH = C2. The casesH = Rn will be treated in future
works.
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3.2. Two-Dimensional Hermitian Processing of the 2-Sphere:
The Quantum Spin in Its Complex Version

Here, we embedS2 into the smallest complex Hilbert space possibleH = C2.
This quantization leads to thecoherent spin states(Arecchiet al., 1972; Perelomov,
1986; Radcliffe, 1971). Proceeding as indicated in Gazeauet al. (to appear), we
defineH by the selection of the two complex functions

|1〉 ≡ 81 : 81(x) =
√

2 cosθ/2 (13)

|2〉 ≡ 82 : 82(x) =
√

2 sinθ/2eiφ , 0≤ θ ≤ π, 0≤ φ ≤ 2π.

We define the embedding map

x 7→ |x〉 =
√

2 cosθ/2|1〉 +
√

2 sinθ/2eiφ|2〉, (14)

leading to

|x〉〈x| = 2

[
cos2 θ/2 cosθ/2 sinθ/2e−iφ

cosθ/2 sinθ/2eiφ sin2 θ/2

]
= [σ0+ cosθ σ3+ sinθ cosφ σ1+ sinθ sinφσ2].

We can check ∫
S2
µ(dx)|x〉〈x| = I, 〈x|x〉 = 1.

The Pauli matricesσi andσ0 form a basis of the 2× 2 complex hermitian
matrices. The upper and lower symbols follow from those of the basis, namely

σ̌0 = 1

σ̌1 = sinθ cosφ

σ̌2 = sinθ sinφ

σ̌3 = cosθ

σ̂0 = 1

σ̂i = 3σ̌i , i = 1, 2, 3.

We obtain easily the operators associated to the functions (coordinates)θ and
φ as

Aθ = π

8

[
3 0
0 5

]
, Aφ = π

4

[
4 i
−i 4

]
(15)

Their commutator is [Aφ , Aθ ] = iπ2

64 σ1, with

〈x|[ Aφ , Aθ ]|x〉 = iπ2

64
sinθ cosφ (16)
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and

〈x|[ Aφ , Aθ ]
2|x〉 = − π4

(64)2
. (17)

We may calculate the operators associated to the coordinates inR3:

x1 = sinθ cosϕ 7→ 1

3
σ1, (18)

x2 = sinθ cosϕ 7→ 1

3
σ2, (19)

x3 = cosθ 7→ 1

3
σ3, (20)

involving the three Pauli matrices. These operators provide the quantum version of
the coordinates. We interpret them below in terms of noncommutative geometry.

Note that we can perform the same procedure with the two functions
8′1(x) = √2 cosθ/2e−iφ/2 and8′2(x) = √2 sinθ/2e−iφ/2, instead of81 and
82 given by (13), with identical results.

The generalization toL + 1, instead of 2-dimensions, starts from a choice
of L + 1 basis functions (see below), leading to an Hilbert spaceH of dimension
L + 1. As we will see, this is linked to the fuzzy sphere withL + 1 cells.

3.3. Link With the Fuzzy Sphere

We recall an usual construction of the fuzzy sphere (Madore, 1995, p. 148).
It starts from the decomposition of any smooth functionf ∈ C(S2) in spherical
harmonics,

f =
∞∑
`=0

∑
m

f`mY`
m. (21)

We noteV` the (2̀ + 1)-dimensional vector space generated by theY`
m, for fixed

`. The direct sum⊕L
`=oV`, generated by theY`

m for ` ≤ L, is a vector space of
dimension (L + 1)2.

Through the embedding ofS2 inR3, we may write each point ofS2 asx = (xi ),
with

∑3
i=1(xi )2 = 1. Any function inS2 can be seen as the restriction of a function

onR3. Moreover, such functions are generated by the homogeneous polynomia in
R3. This allows (identifying a function and its restriction) to express equation (21)
in a polynomial form inR3:

f = f(0)+
∑
(i1)

f(i )x
i + · · · +

∑
(i1i2···i`)

f(i1i2···i`)x
i1xi2 · · · xil + · · · , (22)

where each sum extends to all symmetric combinations of the` indices to generate
V`. For each fixed value of̀, the 2̀ + 1 coefficientsf(i1i2···i l ) (` fixed) are those
of the symmetric traceless 3×3× · · · × 3 (̀ times) matrics.
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• To obtainSfuzzy,L+1, the fuzzy sphere withL + 1 cells, we consider the three
generatorsJi of the (L + 1)-dimensional irreducible unitary representation
(IUR) of SU(2). They are expressed as (L + 1)× (L + 1) matrices obeying

[ ji , JJ ] = i εi jk Jk. (23)

• To obtain the operatorF associated to any functionf , we first replace each
xi by the matrixXi = K Ji , whereκ = 2r/

√
L2+ 2L.

• In the above development (22) off , we replace each coordinatexi by the
(L + 1) × (L + 1) matrix xi , and the usual product by matrix product.
Then we truncate the expression obtained at index` = L. These matrices
generate the setM L+1 of (L + 1)2 independent (L + 1)× (L + 1) matrices:
a closed algebra through the product, which provides a finite approximation
toC(S2). According to this construction, a basis ofM L+1 is provided by all
products of theJi ,s up to powerL. The corresponding (noncommutative)
matrix geometries are finite, fuzzy approximations to the smooth sphere
S2, which appears as the limitN →∞ of their sequence. Note thatM L+1

may be identified to⊕L
`=0V`.

Examples:

• L = 0: we replace thexi by the pure number 1 andM1, of dimension 1,
reduces toC.
• L = 1: we replace thexi by κ1σ

i , the three Pauli matrices (κ1 = 2r/3). By
their products, they generateM2, of dimension 4. This gives the geometry
of the fuzzy sphereSfuzzy,2 with 2 cells.
• L = 2: we replace thexi by κ2Ji , with κ2 = r/

√
2, and the three rotation

matrices; [Ji , J j ] = i εi jk Jk. By their products, they generateM3, of dimen-
sion 9. This gives the geometry of the fuzzy sphereSfuzzy,3 with 3 cells.

According to this construction, the geometry of the fuzzy sphere results from
the choice of the algebraM L+1, of the representation matrices, with their matrix
product. This gives the abstract algebra of operators acting onSfuzzy,L+1. The order
(L + 1) of the matrices invites to see them as acting as the endomorphisms of an
Hilbert space of dimension (L + 1) (Freidel and Krasnov, 2002). This is exactly
what provides the coherent states introduced here.

3.3.1. Fuzzy Spheres From Coherent States

The CS procedure presented above deals with the caseL + 1= 2. It associates
to the three coordinatesxi , the three Pauli matrices, i.e., the three operators involved
in the construction ofSfuzzy,2. With the identity matrix, they form the vector space
of operatorsM2. We introduced them through their action on the Hilbert space
V1/2 generated by81 and82, which provides a 2-dimensional IUR of SU(2).
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This suggests the following generalization of the CS procedure which leads to
the fuzzy sphereSfuzzy,L+1: we consider as the Hilbert spaceV L/2 which is of the
(L + 1)-dimensional IUR of SU(2). WhenL = 2k is even, we may chose forVk the
canonical basis|k, i 〉,= −k, . . . k, where each|k, i 〉 ≡ Yk

i is a spherical harmonic.
This does not apply however whenL is odd. In the general case, we may follow

Gazeau and Navaes (2003). We select the basis|L/2, i 〉, i = −L/2, . . . , L/2,
corresponding to the orthogonal functions2L/2

i . These functions are defined by
the intermediary of the complex variable

z ≡ tanθ/2e−iφ , as2L/2
i (x) = 2L/2

i (θ , φ) ≡
√

CL
L/2+i

zL/2+i

(1+ |z|2)L/2

=
√

CL
L/2+i cosL/2−i θ/2 sinL/2+i θ/2e−i (L/2+i )φ ,

with CL
L/2+i ≡ L!

L/2+i )!(L/2−i )! (formula (19) of (Gazeau and Novaes, 2003). This

allows us to seeM L+1 as the set of endomorphisms End(V L/2).
The coherent states are constructed following the procedure above:

|x〉 =∑i 2
L/2
i (x)|L/2, i 〉. The observables are given by

Af =
L/2∑

i , j=−L/2

∫
µ(dx) f (x)2̄L/2

i (x)2̄L/2
j (x)| j 〉〈i |. (24)

In other words, [Af ] i j =
∫
µ(dx) f (x)2̄L/2

j (x). Now we can develop
f as f =∑∞`=0

∑
m f`m2`

m and calculate the sum. To go further, we take into
account the fact that the product2̄L/2

i (x)2L/2
j (x) can be developed themselves in

spherical harmonics, with all terms having` lower thanL. Given the orthogonality
of the spherical functions, this implies that the only terms in the development of
f are those with̀ ≤ L. Finally, this leads to

Fi j =
∫
µ(dx)

L∑
`=0

f`m2
`
m(x)2̄L/2

i (x)2L/2
j (x). (25)

Involving the Clebsh–Gordan coefficients

C`L/2L/2
mi j ≡

∫
µ(dx)2`

m(x)2̄L/2
i (x)2L/2

j (x), (26)

we obtain finally

Fi j =
L∑
`=0

f`mC`L/2L/2
mi j . (27)

In particular, the observableŝY`
m associated to the spherical harmonics

Y`
m, ` ≤ L, are in number (L + 1)2 and provide a basis forM L+1. They are defined

by [Ŷ`
m] i j = C`L/2L/2

mi j .
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For any value ofL, the CS construction leads to an Hilbert space of dimension
L + 1, as indicated above. What we have shown is that the canonical algebra of
operators acting onH identifies with the algebra of operators acting onSfuzzy,L+1,
the fuzzy sphere withL + 1 cells.

4. DISCUSSION

The CS quantization method proposed here applies to any observation set.
In Gazeauet al. (to appear) we applied it to discrete samples and to the unit
segment. More general developments will be given in a forthcoming paper. Here
we have presented its application to the sphereS2. A quantization appear as a
choice to look at the sphere with a different point of view, with a finite resolution.
We have shown how complex quantizations lead to an explicit construction of
the Hilbert space associated to the fuzzy sphere, although we have not examined
the noncommutative differential structure associated. We have also emphasized
the links with the theory of (irreducible) group representations.

The derivation of coherent spin states shows how this procedure, applied to
a symplectic space, is able to give an usual dynamical quantum theory. However,
as we claimed, it is much more general, allowing to perform quantization in the
absence of any dynamical evolution. In further works, we will examine this possi-
bility and study the application of this quantization procedure to other manifolds,
with and without symplectic structure. Potential applications are the derivations
of new fuzzy spaces. Also, since quantization can be performed in the absence of
any dynamics, this opens perspective for fully covariant approaches, when no time
function is defined.

REFERENCES

Arecchi, F. T., Courtens, E., Gilmore, R., and Thomas, H. (1972).Physical Review A6, 2211.
Ali, S. T., Antoine, J.-P., and Gazeau, J.-P. (2000).Coherent States, Wavelets and Their Generalizations,

Graduate Texts in Contemporary Physics, Springer-Verlag, New York.
Berezin, F. A. (1975). General concept of quantization.Communications in Mathematical Physics40,

153–174.
Daubechies, I. (1992).Ten Lectures on Wavelets, SIAM-CBMS.
Feng, D. H., Klauder, J. R., and Strayer, M., eds. (1994).Coherent States: Past, Present and Future

(Proc. Oak Ridge 1993), World Scientific, Singapore.
Freidel, L. and Krasnov, K. (2002).Journal of Mathematical Physics43, 4.
Gazeau, J.-P., Garidi, T., Huguet, E., Lachi`eze-Rey, M., and Renaud, J. (to appear), Examples of

Berezin-Toeplitz quantization: Finite sets and Unit Interval.In Proceedings of the Workshop in
honor of R. Sharp, Montreal, 2002, P. Winternitz, ed., CRM-AMS.

Gazeau,J.-P., and Klauder, J. R.(1999). Coherent states for systems with discrete and continuous spec-
trum.Journal of Physics A: Mathematical and General32, 123–132.

Gazeau, J.-P., and Monceau, P. (2000). Generalized coherent states for arbitrary quantum systems. In
Conf́erence Mosh́e Flato 1999—Quantization, Deformations, and Symmetries, Vol. II, G. Dito
and D. Sternheimer, eds., Kluwer, Dordrecht, pp. 131–144.



P1: JLS

International Journal of Theoretical Physics [ijtp] pp924-ijtp-469732 September 26, 2003 15:54 Style file version May 30th, 2002

1310 Rey, Gazeau, Huguet, Renaud, and Garidi

Gazeau, J.-P. and Novaes (2003).Journal of Physics A: Mathematical and General36, 199–212.
Klauder, J. R. (1963a). Continuous-representation theory, I: Postulates of continuous-representation

theory.Journal of Mathematical Physics4, 1055–1058.
Klauder, J. R. (1936b). Continuous-representation theory, II: Generalized relation between quantum

and classical dynamics.Journal of Mathematical Physics4, 1058–1073.
Klauder, J. R. (1996). Coherent states for the hydrogen atom.Journal of Physics A: Mathematical and

General29, L293–298.
Landau, L. and Lifshitz, E. M. (1958).Statistical Physics, Pergamon, New York.
Lieb, E. H. and Loss, M. (2001).Analysis Graduate Studies in Mathematics, 2nd edn., American

Mathematical Society, Providence, RI.
Madore, J. (1995).An Introduction to Noncommutative Differential Geometry and Its Physical Appli-

cations, Cambridge University Press, Cambridge, UK.
Magnus, W., Oberhettinger, F., and Soni, R. P. (1996).Formulas and Theorems for the Special Functions

of Mathematical Physics, 3rd edn., Springer, Berlin.
Perelomov, A. M. (1986).Generalized Coherent States and their Applications, Springer, Berlin.
Radcliffe, J. M. (1971).Some Properties of Coherent Spin States. Journal of Physics A: General Physics

4, 313.


